ASSET MANAGEMENT 101

CT GIS Group 6/26/2020

Boulder Mountain Creative

- Woman-Owned Small Business
- Offices in Storrs, CT and Hillsboro, Oregon.
- BMC was inspired by TEDx and specializes at the intersection of Design and Technology.
- Boulder Mountain Creative specializes in the following services:
 - Asset Management
 - CMMS Implementation Support
 - GIS
 - Database Data Model Design
 - Technology Planning
 - Project Management

Juston Manville, MIAM

27 Years in Engineering Specific

- Asset Management
- Systems Integration
- Compliance Reporting
- Pavement Management
- CIP Prioritization
- GIS

What is Asset Management?

"Coordinated activity of an organization to realize value from assets." (International Organization for Standardization (ISO) 55000:2014)

39 Areas of Asset Management

	Asset Management Policy					
Strategy & Planning	Asset Management Strategy & Objectives					
	Demand Analysis					
	Strategic Planning					
	Asset Management Planning					
	Capital Investment Decision-Making					
Asset Management Decision-Making	Operations & Maintenance Decision-Making					
	Lifecycle Value Realisation					
	Resourcing Strategy					
	Shutdowns & Outage Strategy					
	Technical Standards & Legislation					
	Asset Creation & Acquisition					
	Systems Engineering					
	Configuration Management					
	Maintenance Delivery					
Lifecycle Delivery	Reliability Engineering					
	Asset Operations					
	Resource Management					
	Shutdown & Outage Management					
	Fault & Incident Response					
	Asset Decommissioning & Disposal					

	Asset Information Strategy					
Asset Information	Asset Information Standards					
Asset information	Asset Information Systems					
	Data & Information Management					
	Procurement & Supply Chain Management					
	Asset Management Leadership					
Organisation & People	Organisational Structure					
	Organisational Culture					
	Competence Management					
	Risk Assessment & Management					
	Contingency Planning & Resilience Analysis					
	Sustainable Development					
	Management of Change					
Risk & Review	Asset Performance & Health Monitoring					
	Asset Management System Monitoring					
	Management Review, Audit & Assurance					
	Asset Costing & Valuation					
	Stakeholder Engagement					

Asset Management Drivers

- Portfolio of aging and expensive assets
- Understanding future renewal expenditures
- Trade-off decisions between O&M (OpEX) and Capital (CapEX) → Total Expense (TOTEX)
- Need for optimal investment strategies new and old
- Loss of institutional knowledge from retiring workforce aka "Knowledge Management"
- Need for efficient maintenance practices
- Lack of cross-department integration
- Technology inputs not informing outputs

Goals of a Robust AM Program

Improved financial performance:

- Return on investments and reducing costs
- Preserve asset value without sacrificing the short or longterm objectives

Informed asset decisions:

- Data driven decision making to balance costs, risks, opportunities and performance
- Demonstrated compliance:
 - Transparently conform with legal, statutory and regulatory requirements
- Improved efficiency and effectiveness:
 - Review and improving processes, procedures and asset performance to improve efficiencies and effectiveness

An Asset Management approach balances effort with value!

Most effective use of money available

Problem-solving approach

Knowledge transfer for long-term sustainability

Improved Financial Performance

"Give me six hours to chop down a tree and I will spend the first four hours sharpening the axe" – Abraham Lincoln

Forecasting Replacement Cost is a Key Part of Asset Planning

Replacement Year Depends on Remaining Useful Life

Philosophies That Guide Capital Funding

	Pros	Cons
Cash Reserves	 Lower overall cost Financial flexibility Eases financial projections 	 Higher near-term rates Disproportionate burden on existing customers Need higher cash balances Puts a premium on advance planning
Debt	 Mitigates immediate rate impacts of capital investment "Generational equity" You get the money when you need it 	 Higher overall cost (interest) Reduces financial flexibility Debt is a useful tool in the toolbox, but amount of debt must be limited Last resort

How Do You Want to Play Ball?

Options for Funding Capital Through Rates

- Do nothing
- Original-cost depreciation
- Replacement-cost depreciation
- Sinking fund (based on projected needs)

Asset Replacement Example

- Assumptions:
 - \$1 million asset
 - 40-year useful life
 - 3% annual cost inflation
 - 1% investment earnings rate

- Debt funding for costs that exceed resources:
 - 4.5% interest rate
 - 20-year repayment period
- We can choose to fund this replacement through rates based on:
 - Original-cost depreciation: \$1,000,000 / 40 years = \$25,000 per year
 - Replacement-cost depreciation: \$25,000 x (1.03)^{Asset Age} per year
 - Sinking fund \$64,783 per year

Annual transfers escalate with inflation, ranging from \$25,000 - \$79,176 per year

Annual transfer needed to fully cover projected replacement cost in projected year of replacement

Funding for Asset Replacement

Annual Rate Funding for Replacement

System Reinvestment Policy	Total Funded From Rates				
None	\$4,869,376				
Original-Cost Depreciation	\$3,990,279				
Replacement-Cost Depreciation	\$3,346,538				
Sinking Fund	\$2,591,337				

Amount needed to fund a \$3.2-million asset replacement in Year 40

Minimize Expenses Using Asset Management

Informed Asset Decisions

"Most of the world will make decisions by either guessing or using their gut. <u>They</u> will be either lucky or wrong." – <u>Suhail Doshi</u>

Data Fundamentals

Strategy

- Clear statement of objectives
- Data managed through asset lifecycle
- Decision making process outlined

Align goals:

Finance, information systems, engineering and operations

Leadership

- Clearly defined roles and responsibilities
- Empower employees

Assurance

A process for monitoring and improvement

Asset Hierarchy Defined

A systematic and comprehensive listing of all assets in a logical, nested order that facilitates quick location of asset records and the rolling up of data from lower levels to higher or the drilling down from higher levels to lower. The hierarchy, when combined with unique identification numbers and relevant attribute data for each asset comprises an asset registry, is one of the most fundamental building blocks of an asset management program and system. ¹

WERF: http://simple.werf.org/simple/media/AHT/howTo.html

Asset Hierarchy

- Cost rolls up from part(s) to site(s)
- Condition rolls up from part(s) to site(s)
- Depth of the hierarchy needs to consider:
 - Level of asset for maintenance: maintenance managed item(s)
 - Information system(s) used:
 - GIS is shallow
 - Maximo can go 9 levels
 - PeopleSoft, Tyler Technologies (Finance Systems)
 - CAD / BISDM / ArcFM

Step 1: Organize the Layout

- Identify components and logic groupings
- Determine roll-up requirements
- Define the levels required for operations and maintenance (maintenance managed items)

Maintenance Managed Item (MMI)

- A maintainable unit is repaired by replacing a component or part
- A component is replaced upon failure, not repaired
- Low cost items could be tracked based on criticality:
 - Due to *indirect cost consequences*
 - Due to *safety*
 - Due to theft
 - Due to *Environmental Impact*

Step 2: Develop Asset Registry

- Asset Tags & Naming Conventions
 - *Unintelligent* (random, often sequential numbers)
 - Semi-intelligent (numbers that may indicate the type of asset, department, or responsible Business Unit and may identify its approximate location but then use an unintelligent sequential number for the balance of the number)
 - Fully intelligent (numbers that will have a detailed structure so that the number can indicate the general type of asset, the location, and whatever other attributes are deemed important)
- Document Data
 - Develop attributes of asset classes
 - Inventory and record tag IDs

Step 3: Load Data & Beyond

- Develop a strategy for testing and loading data
- Develop relationships with data collectors, end users and data stewards
 - Include all levels of the organization
 - Train data collectors, end users and data stewards on the goals of systems
 - Train end users in the use of systems
- Implement a change control process
 - Consider dependent systems:
 - Finance System
 - GIS
 - RCM Tools
 - Etc...

Data you can trust...

The Truth about Field Truth

- As-Built drawings are always correct?
- Biggest gain in efficiencies
- Better data = better reporting
- High ROI
- Common Operating Picture

Good Data Planned Actions Lowest Cost

Demonstrated compliance

"All I want is compliance with my wishes, after reasonable discussion."

Winston Churchill

Good Data Keeps the Auditors Away

- GASB
- MS4
- NPDES
- TAMP

Improved Efficiency

"Modern technology has become a total phenomenon for civilization, the defining force of a new social order in which efficiency is no longer an option but a necessity imposed on all human activity."

Jacques Ellul

Levels of Service Drive Risk

Levels of Service Drive Priorities

"A good place to be a pipe" - PWB

What risk are you willing to take....

Operational Efficiencies

Capacity	Condition
A – No Future Issues	1 – New
B - Little Future Issues	2 - Good
C – At Capacity	3 - Fair
D - High Capacity Issue	4 - Poor
E – Major Capacity Issues	5 - Failed

Priority Rank with a Risk Map

	Poor	1 to 1.9	9	10	11	12	13	14	15	16	17	18	19
		2 to 2.9	8	9	10	11	12	13	14	15	16	17	18
Š		3 to 3.9	6	7	8	9	10	11	12	13	14	15	16
Condition Values	Fair	4 to 4.9	5	6	7	8	9	10	11	12	13	14	15
	l _R	5 to 5.9	4	5	6	7	8	9	10	11	12	13	14
0		6 to 6.9	3	4	5	6	7	8	9	10	11	12	13
		7 to 7.9	2	3	4	5	6	7	8	9	10	11	12
	Good	8 to 8.9	1	2	3	4	5	6	7	8	9	10	11
		9 to 10	0	1	2	3	4	5	6	7	8	9	10
	Conse		ence Beta	1	2	3	4	5	6	7	8	9	10
		Risk Level Low Medium-Low				Medium Medium-High High				ah			

Consequence

Results (Map #)

13 - 16

Medium 9 - 12

Medium-Low

Low 1 - 4

Key Asset Management Concepts Summary

- 1. Policy
- 2. Levels of Service
- 3. Failure Modes, Effects, and Criticality Analysis (FMECA) / Fault Tree
- 4. Lifecycle Costing
- 5. Risk Management
- 6. Condition Assessments
- 7. Business Case Evaluations
- 8. Optimized Renewals Decision Making (Asset Analytics)
- 9. Project Prioritization
- 10.Lifecycle Management Plans (Asset Management Plans)
- 11.Information Systems

Question or Comments?

Juston Manville, MIAM

Asset Management 503.867.7652
Juston@BoulderMountainCreative.com

Laurel Manville

Owner 971.282.5293 Laurel@BoulderMountainCreative.com

